Spectral classification of minerals in Aram Chaos. From Gilmore et al. (2011)

Hyperspectral and high-resolution image data from the Mars Reconnaissance Orbiter  allow us to link mineralogy to morphology and infer martian environments.  Prof. Gilmore’s groups examines visible/near-infrared data from orbit and in the laboratory to better understand Mars history.  Laboratory work allows us to better understand the relationship between real materials and their spectral signatures.  We have published the first paper on hydrous carbonates relevant to Mars, including synthesizing low-temperature minerals and collecting spectra new to the literature. Current work uses a Mars chamber built in house to create, evaporate and collect spectra of Mars analogue brines under Mars conditions. Our group has also tested and applied automated image processing techniques useful for hyperspectral data analysis using a combination of laboratory, orbiter and field-derived spectra.

PUBLICATIONS (#indicates postdoc author, *indicates graduate student author, ^indicates undergraduate student author)

^Hughes E. B., Gilmore M., ^Martin P. E., *Eleazer M. (2023) Visible to near-infrared reflectance and Raman spectra of evaporites from sulfate-chloride Mars analogue brines, Icarus, 401, 115597.

Rodríguez A., Varekamp J. C., vanBergen M. J., *Kading T. J. Oonk P., Gammons C. G. and Gilmore M. (2016) Acid rivers and lakes at Caviahue-Copahue volcano as potential terrestrial analogues for aqueous paleo-environments on Mars. In: Copahue volcano (Tassi et al., eds.) Springer series in Volcanology, p. 141-172.

*Harner P. L. and Gilmore M. S. (2015) Visible-near infrared spectra of hydrous carbonates, with implications for the detection of carbonates in hyperspectral data of Mars, Icarus 250, 204-214.

Wagstaff K. L., Lanza N., Thompson D. R., Dietterich T. G. and Gilmore M. S. (2013) Guiding scientific discovery with explanations using DEMUDAAI Conference on Artificial Intelligence, North America, 7 pp.

*Harrison T. N., Gilmore M. S. and Greenwood J. P. (2012) Experimental VNIR reflectance spectroscopy of gypsum dehydration: Investigating the gypsum to bassanite transition, Am. Mineralogist 97, 598-609. doi:10.2138/am.2012.3667; Erratum published 2013, Am. Mineralogist 98, 1083, doi:10.2138/am.2013.623.

Gilmore M. S., Thompson D. R., ^Anderson L. J., Karamzadeh N., Mandrake L., Castaño R. (2011) Superpixel segmentation for analysis of hyperspectral datasets, with application to CRISM data, M3 data, and Ariadnes Chaos, Mars, J. Geophys. Res., 116, E07001, doi:10.1029/2010JE003763.

Bue B., Thompson D., Gilmore M. Castaño R. (2011) Metric learning for hyperspectral image segmentation, Proceedings of the 3rd IEEE Workshop on Hyperspectral Image and Signal processing: Evolution in Remote Sensing (WHISPERS), 4pp.

Thompson D. R., Mandrake L., Gilmore M. S. and Castaño R. (2010) Superpixel endmember detection, IEEE Trans. Geosci. Remote Sens., 48, 4023-4033, doi:10.1109/TGRS.2010.2070802.

Mandrake L., Thompson D. R., Gilmore M. S., Castaño R. and Noe Dobrea E. (2010) Automated neutral region selection using superpixels, Proceedings of the 2nd IEEE Workshop on Hyperspectral Image and Signal processing: Evolution in Remote Sensing (WHISPERS), 4pp.

Thompson D. R., Castaño R. and Gilmore M. S. (2009) Sparse superpixel unmixing for exploratory analysis of CRISM hyperspectral images. IEEE Workshop on Hyperspectral Image and signal Processing: Evolution in Remote Sensing, 4 pp.

Gilmore M. S., Bornstein B., *Merrill M. D., Castaño R. and Greenwood J. P. (2008) Generation and performance of automated jarosite mineral detectors for visible/near-infrared spectrometers at Mars, Icarus 195, 169-183, DOI: 10.1016/j.icarus.2007.11.025

Bornstein B., Castaño R., Gilmore M. S., *Merrill M. D., and Greenwood J. (2006) Onboard detection of jarosite minerals with applications to Mars. Proc. IEEE Aerospace Conference, Big Sky, MT, March 4-11, 2006, IEEEAC Article #1656010, 7 pp.

Bornstein B., Castaño R., Gilmore M. S., *Merrill M. D., and Greenwood J. (2005) Creation and Testing of an Artificial Neural Network Based Carbonate Detector for Mars Rovers. Proc. IEEE Aerospace Conference, Big Sky, MT, March 5-12, 2005, IEEEAC article #1559330, 7 pp, DOI: 10.1109/AERO.2005.1559330

Gilmore M. S., *Merrill M. D., Castaño R., Bornstein B. and Greenwood J., (2004) Effect of palagonite dust deposition on the automated detection of calcite in visible/near-infrared spectra, Icarus 172, 641-646.

Tanaka K. L., Carr M., Skinner J. A., Gilmore M. S. and Hare T. M. (2003) Geology of the MER 2003 “Elysium” candidate landing site in southeastern Utopia Planitia, Mars, J. Geophys. Res. 108 (E12), 8079, doi:10.1029/2003JE002054.

Gilmore M. S. and ^Phillips E. L. (2002) Role of aquicludes in formation of Martian gullies, Geology 30, 1107-1110.

Jolliff, B., Knoll A., Morris R. V., Moersch J., McSween H., Gilmore M., Arvidson R. E., Greeley R., Herkenhoff K. and Squyres S. (2002) Remotely sensed geology from lander-based to orbital perspectives: Results of FIDO rover May 2000 field tests, J. Geophys. Res, 107, 10.1029/2000JE001470.

Moersch J. E., Jolliff B. L., McSween H. Y., Morris R. V., Gilmore M., Arvidson R. E. and Squyres S. W. (2002) Synthesis of overhead and ground-based infrared spectroscopy at the 2000 FIDO Mars rover field test, J. Geophys. Res. 107, 10.1029/2001JE001524.

Nimmo F. and Gilmore M. S. (2001) Constraints on the depth of magnetized crust on Mars from impact craters, J. Geophys. Res. 106, 12315-12323.

Gilmore M. S., Castaño R., Mann T., Anderson R. C., Mjolsness E., Manduchi R. and Saunders R. S. (2000) Strategies for autonomous rovers at Mars, J. Geophys. Res. 105, 29223-29237.401, 

css.php